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A theoretical study is made of the effect of the presence of a surfactant on the 
dynamics involved in the movement of the contact line when one liquid displaces an 
immiscible second liquid where both are in contact with a smooth solid surface. The 
general procedure of solution is described for a general model for slip between solid 
and liquid near the contact line and also for a general macroscopic geometry. For 
small capillary number and for small values of the length over which slip occurs, it 
is shown, using singular perturbation analysis, that  either 2 or 3 regions of expansion 
are necessary depending on the type of limiting process being considered. Solutions 
are obtained for both situations but for the more important three-region expansion 
case (where there can be large dynamic effects), a detailed discussion is given of the 
manner in which the observable macroscopic contact angle is shown to depend on 
the contact line velocity and on surfactant concentration. The conditions of validity 
for the theory are also discussed. 

1. Introduction 

Consider two immiscible liquids (A and B) or a liquid and a gas in contact with 
a solid surface and suppose that liquid A displaces liquid B so that the contact line 
(where the liquid-liquid interface intersects the solid surface) is constrained to  move 
across the solid surface with velocity U .  It is experimentally observed that the contact 
angle (that the liquid-liquid interface makes with the solid surface) measured through 
liquid A increases as U is increased [Dussan V. 19791. For the situation where there 
is no surfactant present (so that there is continuity of tangential stress across the 
interface), the dynamics of this problem has been examined by Cox (1986). The 
present paper follows this earlier work very closely and extends the results to 
situations where an insoluble surfactant is present on the liquid-liquid interface. As 
with the earlier work, it is assumed that the solid surface (or surfaces) involved are 
perfectly smooth and chemically homogeneous and that we consider a system of 
completely general geometry. 

It is well known that [Hocking 1977; Huh & Mason 1977; Lowndes 19801, whether 
or not surfactant is present, it is necessary to postulate slip between the liquids and 
the solid surface (or possibly some other mechanism) a t  small distances, or order s 
say, from the contact line. This is because there is otherwise a non-integrable 
singularity in the stress at the contact line which would give rise to  an  infinite drag 
force on the solid surface. 

For any specific model for this slip and a given overall geometry of the system, 
the flow fields, surfactant concentration and interface shape are obtained for small 
capillary number Ca and small ratio 6 of slip length s to  macroscopic lengthscale. After 

, 
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a discussion of the outer region ($3) valid everywhere except close to the contact line 
in which the overall geometry of the system is important and the inner region ($4) 
applicable at distances of order s from the contact line, i t  is shown in $5 that in the 
same manner as for the surfactant-free situation (Cox 1986) there are either 2 or 3 
regions of expansion necessary depending on the limiting process involved. For the 
latter situation of 3 regions, an intermediate region exists between the inner and outer 
regions. It is shown that for situations where the two-region expansion is applicable, 
the predicted contact angle must always be approximately its static value whereas 
for the three-region expansion large dynamic effects are predicted. Thus in $6 and 
$7 the solution for the three-region expansion problem is obtained from which it is 
found that at  lowest order in capillary number, this solution is independent of the 
solution in the inner and outer regions and is therefore independent of the slip model 
chosen and of the overall geometry of the system being considered. Furthermore, even 
at the next higher order in the capillary number, the solution is dependent only upon 
two constants obtained from matching onto the inner region (and thus depend on 
the slip model used) and two constants obtained from matching onto the outer region 
(and thus depend on the overall geometry of the system). Finally in $8 a discussion 
of the results obtained is given together with details concerning the conditions of 
validity of the specific assumptions made regarding the surfactant behaviour. 

2. General problem 
Consider a situation in which liquid A (of viscosity pA and density pA) displaces 

liquid B (of viscosity pB and density pB). In a manner similar to that described by 
Cox (1986), it will be assumed that the slip length s is much smaller than a 
characteristic macroscopic lengthscale R so that 

E - p  S 1, 

and also that interfacial tension effects dominate over viscous effects so that 

where U is a characteristic velocity of the spreading process and u* a characteristic 
interfacial tension of the liquid-liquid interface. It is in terms of these two small 
parameters E and Cu that expansions will be made using singular perturbation 
methods. Whereas Cox (1986) considered a surfactant-free interface between the two 
liquids so that the tangential stress in the liquids was continuous across the interface, 
we consider here a surfactant being present so that the liquids can now exert a net 
tangential stress on the interface, this being balanced by a gradient of the liquid-liquid 
interfacial tension resulting from a gradient in surfactant concentration on the 
interface. For simplicity we shall assume that conditions are such that (a) the 
interfacial stress is isotropic and given by an interfacial tension u which is a function 
only of the surfactant concentration c and does not depend on the flow at the 
interface, (b )  the surfactant can be considered insoluble in the sense that there is 
negligible flux of the surfactant from the bulk of the fluids to the interface and 
vice-versa during the spreading process, (c) the surfactant is not deposited on the solid 
surface from the moving liquid-liquid interface, ( d )  the diffusion of surfactant along 
the interface is negligible compared with convection and ( e )  the concentration c of 
the surfactant is non-zero but finite at  all points on the liquid-liquid interface during 
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the spreading process. A discussion is given in $8 of the relationship between these 
assumptions and the fluid mechanics involved from which various conditions for their 
validity are obtained. 

It will also be assumed that the Reynolds numbers (p, R U / p A )  and (pB RU/pB) 
for the flow in the liquids A and B are so small that inertia effects may be neglected 
and also that the Bond number B = IpA-pBIgR2/a* is small so that gravity effects 
are negligible. 

3. Outer region 
Let c* be the surfactant concentration corresponding to the characteristic interfacial 

tension u*. Then if a dimensionless concentration c and interfacial tension ~r are 
defined as 

where c’ and ~ r ’  are the dimensional values, the assumption (a)  mentioned in $2 implies 
that c-r = a ( c )  where CT = 1 for c = 1. 

An outer region of expansion is defined in the same manner as Cox (1986) using 
variables made dimensionless by the quantities R, U and p A ,  so that i t  is valid 
everywhere except close to the contact line. Thus if uA and p, are the dimensionless 
velocity and pressure in liquid A and uB and pB the dimensionless velocity and 
pressure in liquid B in this outer region, then 

in liquid A and hV2uB-VpB = 0. V*uB = 0, (3.3) 

in liquid B where h = ,uB/,uA is the viscosity ratio. Also uA and uB must satisfy on 
all solid walls: 

(i) zero normal component ; 
(ii) the given slip boundary condition. 

In addition, on the interface between the two liquids, the following conditions must 

(iii) the kinematic boundary condition relating the velocity a t  the interface to the 

(iv) the continuity of tangential velocity; 
(v) the force balance on the interface in the tangential direction, which in our outer 

apply: 

interface motion ; 

variables, gives 

where ttA and t t B  are the tangential stresses on the interface due to liquids A and 
€3, Ca is the capillary number defined by (2.2) and V2 is the two-dimensional gradient 
operator in the liquid-liquid interface ; 

(vi) the force balance on the interface in the normal direction, which in outer 
variables is 

Ca ( t tA  + ZtB) = - V2 ~ r ,  (3.4) 

Ahp+Ca ( r n A + 7 , B )  = - C r K ,  (3.5) 

where rnA and rnB are the normal components of stress on the interface due 
respectively to the flow in liquids A and B (directed from liquid A to liquid B) and 
K is the curvature of the liquid-liquid interface (defined as positive with centres of 
curvature on the liquid B side of the interface). 

The quantity AP appearing in (3.5) is the static pressure drop across the interface 
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(in going from liquid A to liquid B) made dimensionless by t~ and R (instead of by 
,uA, R and U )  in order to make it of order unity. 

In addition the interfacial tension cr is related to the surfactant concentration c 

by 
0- = g ( c ) ,  (3.6) 

with the equation of continuity for the surfactant in the interface as 

ac 
at 

V;(cu)+- = 0. (3.7) 

In deriving (3.7) use is made of the assumptions ( b )  and ( d )  mentioned in $2. We shall 
throughout this paper use subscripts A and B on symbols referring to liquids A and 
B. However where no subscript is given, the quantity may be taken to refer to either 
liquid. 

In  order to examine what boundary conditions, if any, should be imposed on the 
velocity at the liquid-liquid interface as the contact line is approached, we take some 
general point 0 on the contact line and consider the motion in the neighbourhood 
of 0 relative to the moving interface. Let s be a unit vector at 0 in the tangent 
direction to the contact line and t be a unit vector perpendicular to s in the tangent 
plane at 0 to the liquid-liquid interface. Then if the component u*s of the velocity 
u in the direction s on the interface is not equal to the component u;s of velocity 
u, of the solid surface at 0 in the direction of s, a velocity field proportional to ro 
would be generated in the liquids near the contact line (where r is distance from the 
contact line). This would then give rise to shear stresses proportional to r-l in the 
s-direction on the liquid-liquid interface. Such a stress field would not be irrotational 
and could not therefore satisfy (3.4). Thus the assumption that u*s # u;s was 
incorrect so that 

at  the contact line. Since the surfactant is convected with the liquid velocity at the 
interface and is not deposited on the solid surface (assumptions ( c )  and ( d )  mentioned 
in §2), it follows that 

U ' S  = u;s, (3.8) 

U ' t  = 0. (3.9) 

Thus combining (3.8) and (3.9) it is seen that relative to the moving interface 

u = U,'SS, (3.10) 

or relative to a fixed set of axes the velocity of the liquids at the interface is 

u = uc-u,'ss+u,'ss, (3.11) 

where u, is the velocity of the contact line and u, is now the velocity of the solid 
surface relative to the new fixed set of axes. 

In the above equations (3.2) and (3.3) and boundary conditions [(i)-(vi), (3.6), (3.7) 
and (3.11)] for u, the quantity B will only appear in the slip boundary condition (ii). 
Also from the manner in which Cu appears, the velocity uA (or u,) may be expanded 
in the form 

U A  = u,o+CauAl+. . . )  (3.12) 

while the liquid-liquid interface expressed asf(r) = 0 [where r is the position vector 
in outer variables], may be expanded as 

f 3 f O + C U f 1 + .  . . = 0. (3.13) 
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The curvature K of this interface and the quantities u and c may likewise be expanded 
as 

(3.14) 

(3.15) 

(3.16) 

In the above expansions, uAo, uAl, fo, etc, may depend on E .  If these expansions are 
substituted into the above stated equations and boundary conditions for u and like 
powers of Ca equated, then at lowest order (3.4) gives V2 uo = 0 so that 

uo = u,, co = c,, (3.17) 

where urn and c,  are functions only of time t and are related to each other by (3.6). 
Likewise the normal-stress boundary condition (3.5) at lowest order gives 

K = K o + c U  K1+ . . . , 
u = a,+Caa,+. . ., 

c = c o + C a c l +  . . .. 

AP = - C T ~ K ~ ,  (3.18) 

so that f o  = 0 is just a static configuration of the interface with constant interfacial 
tension u,. The equation (3.7) at lowest order, namely 

(3.19) 

may then be integrated over the entire liquid-liquid interface area to give 

c,  A = constant, (3.20) 

where A is the area of the interface (which has been assumed to be bounded). Thus 
in problems where the interface area does not change (such as the movement of a 
meniscus with constant velocity along a tube), c ,  and hence urn are constants whereas 
in problems where A does change (such as the spreading of a drop of constant volume 
on a planar solid surface), c ,  varies in time being inversely proportional to A, with 
urn then being determined by the relation (3.6). The zeroth-order velocity fields uA0, 
uBo are then determined by equations of the form (3.2) and (3.3), by the following 
boundary conditions on all solid surfaces : 

(a) zero normal components of velocity ; 
(b) the given slip boundary condition; 

( c )  the kinematic boundary condition; 
( d )  the continuity of tangential velocity; 

(el  v2 (7tA0 + 7tBO) = (3.21) 

obtained from (3.4) where ttAo and 7tB0 are the coefficients of Cao in the expansions 
for 7tA and 7tB; 

and by the following boundary conditions on the static interface shape fo = 0: 

V'U =_Lac,=+-- 1 dA 
2 0  c, at A dt ' (3.22) 

__. 
obtained from (3.19) and (3.20). 

In addition, from (3.11), we require on the interface as the contact line is 
approached that 

uo + u, - u, ' ss + u;ss. (3.23) 

If uo is expanded in terms of E ,  then at order so the above boundary condition (b) 
becomes one of zero tangential velocity (see Cox 1986). 
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tension is determined by (3.4) a t  order Cu+l, namely 

- '2 v1 = 'tAO + 'tBO. 

Once the flow field u, has been determined, the correction v1 to  the interfacial 

(3.24) 

Then c1 is obtained from (3.6) at  order Cu+' as 

(3.25) 

and the shape correction from (3.5) as 

v m ~ i  = - ( 7 n ~ o + 7 , ~ o ) - g i ~ o ,  (3.26) 

where K' is the curvature correction. 
Since it is very difficult to solve this problem even for the most simple geometry 

and since we are primarily interested here in what happens close t.0 the contact line, 
we will calculate only the asymptotic form of the solution as the contact line is 
approached since it is this which is needed for the matching procedure close to the 
contact line. At a general position on the contact line, we set up a cylindrical polar 
coordinate system ( r ,  q5, z) in outer variables with origin 0 on the Cuo position of the 
contact line (and moving with the contact line) and z-axis lying along the tangent 
direction to the Cuo position of the contact line with 9 = 0 in the solid surface in the 
direction of liquid A (and opposite to that of the contact line motion for U > 0). For 
the purpose of investigating the flow in the neighbourhood of 0, we can choose the 
characteristic speed U as the speed of the contact line a t  0, so that the solid surface 
moves with unit dimensionless velocity in the direction 9 = 0. 

As r+O, the static interface shape fo = 0 may be written (Cox 1986) as 

e = {em + o(r)) + o(c~) ,  (3.27) 

where 8 is the slope angle that the interface makes with the solid surface at  a general 
position and where 8, is an unknown angle which will be referred to as the 
macroscopic contact angle. Even if the configuration of the liquid-liquid interface 
is time-dependent with characteristic time T, this unsteadiness has negligible effect 
(Cox 1986) on the normal stresses on the interface for r+O if 

(3.28) 
R 
U 

T is of order - or larger. 

Thus the kinematic boundary condition on the interface (i.e. boundary condition (c)) 
may be replaced by one of zero normal velocity. Solving for the velocity field u, in 
the same manner as Cox (1986) it is seen that it may be expressed in terms of stream 
functions $A and $B (in liquids A and B) so that the radial component ( u ~ , ) ~  and 
transverse component (uAO)$ of uA0 may be written as 

(3.29) 

with similar expressions for uBo. By substituting into (3.2), (3.3) and the boundary 
conditions and solving, we obtain the values of $A and $B as 

$A = r ( ( C A  $ + D A )  cos $ + ( E A  $ + &) sin $ 1 9 1  
(3.30) 

@Grg = ~ { ( c B  4 + DB) cos $ + (EB  9 + F B )  sin $1, J 
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where the constants C,, D,, EA . . . are 

sin2 8, 
8k - sin2 8, ’ 

sin 8, cos 8, - 8, 
8k - sin2 8, ’ 

CA = - 

DA = O ,  

EA = 

F -  %l 

A - 8k-sin2 8,’ 

sin2 8, 
(~ -8 , )~ - s in~  8,’ 

CB = - 

R sin28, 
- (n-8m)2-sin2 8,’ 

D -  

sin 8, cos Om + (K - 8,) 
(R - - sin2 8, ’ E, = 

-R sin 8, C0s8m-(~-8m)8, 
(R - - sin2 8, 

FB = 

(3.31) 

It should be noted that from (3.9) and (3.22) the tangential components of uAo and 
uB0 at the liquid interface both tend to zero as r+O. From the above solution (3.31) 
the asymptomatic value of a for r+O may be calculated using (3.15) and (3.24) as 

a - crm+Ca[h(8,)1nr+P,*+. . . I + .  . ., (3.32) 
where the function h(8) is 

1 cos 8+sin 8) 8 cos 8-sin 8 
(R - 8)2 - sin2 8 + 82-sin28 

h(e)  = -2 (3.33) 

The quantity P,* appearing in (3.32) is a constant of integration. Its value may be 
obtained by solving for t~ in the outer region having prescribed, for example, the value 
of the interfacial tension a at some fixed point in the outer region or the total amount 
of surfactant present on the liquid-liquid interface. The shape of the liquid-liquid 
interface for r + 0 correct to order Ca+l may be obtained by first deriving the normal 
stresses a t  the interface due to uo and substituting into (3.26) and then solving for 
the interface shape making use of (3.27). In  this process we take (see Cox 1986) the 
interface shape fo+Cafl = 0 to have the same contact line asfl = 0. Then for r+O, 
we obtain, 

(3.34) 8 - (8 ,+O(r) }+Ca~,-1( f (8 , )  In r+Q,*+.  . .}+ . . ., 

where “ A ( X  - e)  
f ( e )  = 2 sin e{ + 

(x-8)2-sin2 8 O2-ssin2 8 ’ (3.35) 

and where Q,*, like P,* depends on A ,  8, and the geometry involved in this outer region. 
In the procedure of matching this outer region solution onto a solution valid close 
to the contact line, i t  will be found ($5)  that the value of the as yet unknown constant 
8, is a function of Ca and may be expanded as 

8, = 8,,+Ca O m l + .  . . 
so that the asymptotic form (3.34) may be written as 

(3.36) 

8 = {em,+. . .)+Ca(f(Omo) In r+&,*+8, ,+.  . .}+ . . . (3.37) 
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4. Inner region 
An inner region of expansion, valid close to the contact line, is defined (see Cox 

1986) using variables made dimensionless by the quantities s, U and pA. We thus use 
polar coordinates (P, $) (with origin a t  the actual contact line) as independent 

(4.1) 
variables where P - e - l r  as ?+a. 

I n  this region, the velocity fields uA and uB, the interface slope angle 8 = 8(P) and 
the interfacial tension CT = a(?) are expanded as 

U A  = fiAO+O(Ca), UB = f iBo+O(ca) ,  (4.2) 

8 = do(?) + Ga B,(P) + . . . , (4.3) 

u =C;,(P)+Cu6',(P)+. . . .  (4.4) 

We now express all the equations and boundary condit'ions for uA, uB, u etc stated 
in $ 3  (with the tangential velocity satisfying the given slip boundary condition) in 
terms of the inner variables and substitute into the resulting equations the 
expansions (4.2), (4.3) and (4.4). The tangential stress and normal stress boundary 
conditions (3.4) and (3.5) on the liquid-liquid interface a t  order Cuo thus give 

g o  = u,, 

do = 8,+O(E), 

where u, and 13, are constants of integration. If the configuration of the liquid-liquid 
interface is time-dependent, it  may be shown [Cox 19861 that if (3.28) is satisfied, 
this unsteadiness is negligible in the inner region and one may take zero normal 
velocity as the kinematic boundary condition on the interface. Since the solution for 
the flow fields iA0 and fiBo will depend on the particular slip model which is used, 
we will not perform the detailed calculation of their values. Instead we will derive 
only the asymptotic form of the solution for P-t co, since it is this which is required 
for the matching procedure. For such large values of P, the boundary condition on 
the solid surface must approach the no-slip boundary condition. Then by solving for 
GiAO and dB0, we may determine the stress on the liquid-liquid interface. This may 
then be used in conjunction with the boundary conditions (3.4) and (3.5) to determine 
8, and 5, which then gives the surface-tension variation and interface shape for P+ co 
as 

(4.7) 

(4.8) 

m - a,+Ca[h(B,)lnP+P~+. . . I + .  . . , 

0 - [8,+O(e)]+C~a,-~lf(0,) In P+Q,*+. . . I + .  . . . 

The arbitrariness of the integration constants P: and QT in these results may be 
removed by defining u, and 8, as the values taken at the solid boundary a t  P = 0. 
These quantities P: and Q: will depend on A ,  8, and the particular slip model which 
has been used. We expect 8,, the contact angle at the solid surface, which we will 
call the microscopic contact angle, to have a value determined by the intermolecular 
forces acting very near the contact line. It will thus depend on not only the two liquid 
phases and the solid phase present, but also upon the concentration c, of the 
surfactant present at the contact line. Thus we can expect 8, to depend on the value 
of u, (which is related to  c, by (3.6)). It is not known, however, whether, in addition 
to this dependence on u,, the microscopic contact angle 8, depends directly on the 
spreading velocity U .  Indeed some authors (Cherry & Holmes 1969; Blake & Haynes 
1969) have suggested that 8, might depend on U even in the absence of a surfactant. 
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5. Matching with two and three regions 
When the parameter E is kept fixed and small while Cu-tO, the expansion (3.34) 

for O [and (3.32) for a] valid in the outer region for r+O may be matched onto the 
expansion (4.8) for 19 (and (4.7) for a)  valid in the inner region for ++a. Then in 
a manner similar to that of Cox (1986), Huh & Mason (1977) and Hocking (1977) for 
a surfactant-free situation, we obtain values of am and Om as 

(5.1) 

(5.2) 

am = aw + Ca {h(Ow) In ~ - l +  P t  - P:}, 

dm = d w + C ~ ~ w - 1 ( f ( 8 w )  In ~-l+&:-&$}. 

Equation (5.1) relates the interfacial tension aw at the contact line to the spreading 
velocity U (involved in the definition of Ca) and to the interfacial tension am. This 
quantity am is the constant interfacial tension (which may depend on time 1 )  in the 
outer region for Ca = 0 and is determined by the given total amount of surfactant 
present on the interface. Equation (5.2) relates the macroscopic contact angle Om 
determining the outer solution, to the spreading velocity U and to the microscopic 
contact angle Ow. As already pointed out Ow itself may be dependent on aw determined 
from (5.1). At  any particular instant during the motion of the system, the macroscopic 
contact angle Om may be considered as the angle between the static interface shape 
f, = 0 and the solid surface at the contact line in the outer region. Or alternatively, 
it may be considered as being determined by the asymptotic form (3.42) of the 
interface shape in the outer region as the contact line is approached. 

In a manner similar to that €or the surfactant-free situation, (Cox 1986), it  is seen 
that the results (5.1) and (5.2) are only valid for Cu+O, s+O if the quantity Cu In e-l 
also tends to zero. Under such a situation, the liquid-liquid interface is approximately 
planar (with the interfacial tension approximately constant) near the contact line. 

When Ca+O, e+O with Cu In E - ~  of order unity, the results (5.1) and (5.2) are no 
longer valid since there is then no overlap of the inner and outer regions. It is then 
necessary to introduce a third region called the intermediate region which must exist 
between the inner and outer regions. This was done by COX (1986) and Hocking & 
Rivers (1982) for the surfactant-free situation. In  the subsequent discussion we limit 
ourselves to this situation Ca+O, s+O with 7 = Ca In e-l of order unity and thus 
make an expansion in Cu taking the parameter 7 fixed and of order unity. 

6. Intermediate region 

intermediate region, coordinates (P,$) where P is defined by 
In the same manner as for the surfactant-free situation (Cox 1986)) we use in the 

P = Ca In €9, (6.1) 

where -y<Z<O. (6.2) 

Then it is seen that the end-points P = 0 and 2 = -7  correspond respectively to the 
outer region (with r of order unity) and the inner region (with B of order unity). Thus 
the intermediate region expansion must be matched onto the outer region at f = 0 
and onto the inner region at P = -7. 

Since for any fixed value of Z < 0, r is exponentially small for Cu+O, the flow is 
two-dimensional and so a stream function $ may be defined which we will take to 
have the form 

9 = r w , $ ; 7 , c a ) )  (6.3) 
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/ / / / / / / / / / / / / / / / / / / / / / / /  
-T-+ 

FIGURE 1.  Intermediate region: coordinates are (Z, 4) where Z = Cu In BB.  Interface is q5 = I(?) 
and has slope 0 = O(Z). 

with corresponding pressure field 

P A  = r-1hA(2j $; 7, ca), (6.4) 

in liquid A and P, = r-1A&3(x, $; 7, Ca),  (6.5) 

in liquid B. The liquid-liquid interface is taken to  be 

$ = / % ; 7 , W  (6.6) 

so that the angle 8 its tangent makes with the solid surface (see figure 1 )  a t  any 
position is 

From the form (6.3) of the stream function, the radial component u, and transverse 
component uQ of the velocity field in either liquid are 

where, since $ satisfies the biharmonic equation, 0 satisfies 

As shown by Cox (1986) the given slip boundary condition on the solid surface may 
be replaced by the no-slip boundary condition, the error produced by this procedure 
being exponentially small as Ca+O. Thus at  the solid surface the no-slip boundary 
condition may be written as 

(6.11) 
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If the liquid-liquid interface configuration is time dependent, i t  may be shown (Cox 
1986) that so long as (3.28) is satisfied, the effect of such unsteadiness is exponentially 
small as Cu+O. Thus the normal component of velocity may be taken to be zero a t  
the interface giving (Cox 1986) 

gA = gE = 0 on $ = 8, (6.12) 

this being correct to all orders in Cu. I n  our intermediate variables, the equation (3.7) 
with boundary condition (3.9) gives the tangential component of velocity on the 
interface as zero for both liquids. Then using the results given by Cox (1986), it is 
seen that this gives 

(6.13) 

correct to all orders in Ca. The tangential and normal-stress boundary conditions 
(using results obtained by Cox 1986) are likewise found to be respectively 

(6.14) 

7. General solution 
Since the equations (6.9) and the boundary conditions (6.10), (6.11), (6.12) and 

(6.13) for gA and OB (determining the flow field) contain no term of order Cacl, it  
follows that for small Ca 

#A = g"AO+O(Ca2), OB = OBofO(Ca2)* (7.1) 

Substituting these expansions into (6.9) and boundary conditions (6.10)-(6.13) and 
equating terms in Cao we obtain equations for lAo, gB0 which possess the solution 

g A o =  ( C A $ + D A ) c o s $ + ( E A $ + F A ) s i n $ ,  ( 7 4  

gB0 = (CB $ + DB) cos 4 + ( E B  $ + FB) sin $ 9  (7.3) 

where C,, D, .  . . are given by (3.31) with Breplacing 8,. The equation (6.14) for the 
interfacial tension r and the equation (6.15) for the interface shape with these values 
of gA and gB may then be solved to give 

(7.4) 

(7.5) 

where ( K ,  + Ca K,)  and (K3 + Cu K,) are constants of integration which have been 
expanded for small Ca. The functions q ( 8 )  and g ( p )  are 

r = (K,+Ca K, )  q(/7)+O(Cu2), 

2 = ( K ,  + cu K,)  g ( P )  + (K,  + ca K4) + O(Ca,), 

Using (6.7), we may write (7.4) and (7.5) in the alternative form 
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If this is matched a t  2 = 0 onto the asymptotic forms (3.32) and (3.34) of the outer 
region solution for r+O, the values of the constants K,, K,, K ,  and K ,  may be 
obtained. These, when substituted back into (7.8) and (7.9), yield 

(7.10) 

If these solut<ions are now matched at, j: = -7 onto t,he asymptotic forms (4.7) and 
(4.8) of the inner-region solution for B + CO, we obtain 

and 

where use has been made of the assumption that 7 is of order unity. If liquid A is 
receding so that li < 0, these results are still valid [as are also the definitions of €':, 
P,*, QF, and Q,* given by (4.7), (3.32), (4.8), and (3.37)] ifCa = ,uA U/ais taken as being 
negative. In the results (7.12) and (7.13), i t  should be remembered that the quantities 
Pi* and Q:, obtained from the inner-region solution, depend on 8, and P,* and Q,*, 
obtained from the outer region solution, depend on 8,. Thus if Om, 8, and urn are 
known, (7.13) will determine the value of C'n and hence the spreading velocity U .  Then 
with this value of Cu, (7.12) will det,ermine the value of g,. 

Rather than Om, Ow, and urn being known, a more usual situation is one in which 
only U and 'T, are known. This will occur whenever the contact line is forced to move 
with a velocity U and the total interface area is a constant in time with a known 
amount of surfactant present determining urn (as for a meniscus forced to move along 
a tube with speed U ) .  Then Om, Ow, and rw are determined by (7.12), (7.13), and the 
relation 

8, = ~ , ( a w ) ,  (7.14) 

mentioned in fi 4, between the microscope contact angle Ow and the interfacial tension 
crw (or the surfactant concentration cw) of the interface a t  the wall. 

A more complicated situation may occur in which the spreading speed L7 is 
unknown and the total interface area A may vary in time. Such is the situation for 
a drop spreading on a plane surface (which for the surfactant-free situation was solved 
by Hocking & Rivers 1982). Then U ,  Om,  8,, grn, and cW are determined by (7.12), 
(7.13), and (7.14) together with ( i )  it relation between grn and A (obtained by 
eliminating c, from (3.6) and the surfactant conservation equation (3.20)) and (ii) 
a supplementary equation such as conservation of liquid volume (for a drop spreading 
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on a plane surface) or a given value of the pressure drop across the interface (for a 
meniscus moving along a non-uniform tube with a given pressure drop across the 
interface). 

When no surfactant is deposited on the solid surface (assumption (c) of $2), the 
explicit form of (7.14) may be obtained by noting that if the contact line is moved 
a distance dl (from liquid A to liquid B) a t  an infinitesimally small speed, conservation 
of energy yields 

(cTB- CTA) dl = CT, cos 0, dl, (7.15) 

if the interfacial tension of the surfactant-covered interface is uw. In  (7.15), uA and 
uB are the surface energies per unit area of the solid surface in contact with the liquid 
A and with the liquid B respectively. If the microscopic contact angle of the 
surfactant-free interface is O0, then a similar argument applied to such an interface 
gives 

(cB-uA) dl = go cos 8, d1, (7.16) 

where go is the interfacial tension of the surfactant-free interface. From (7.15) and 
(7.16) we obtain the relation (7.14) as 

(7.17) 

This gives a real value for 8, only if 

gw 2 gol ~ 0 s  e, 1 ,  (7.18) 

so that the interfacial tension at the wall must not fall below CT,~ cos 6, J . 

8. Discussion 
It may readily be shown that up to and including terms of order Ca+l, the results 

(7.12) and (7.13) obtained from the triple-region expansion procedure reduce to the 
results (5.1) and (5.2) obtained from the double-region expansion procedure under 
the conditions when the latter is valid (i.e. when Ca In (s-')+O as Ca+O, s+O). 
However the two sets of results are distinct when Ca In (8-l) is of order unity as 
Ca+O, E+O,  the results (5.1) and (5.2) then no longer being valid. 

At lowest order in Ca, the results (7.12) and (7.13) reduce to 

L { g ( e r n )  -g(d,)} = ca ~n ( E - 1 )  + o(ca), (8.2) 

which have the advantage that they do not involve Pi*, P,*, Q:, and Q,* and hence are 
independent of the geometry of the flow in the outer region and independent of the 
slip model chosen for the inner region. However, (8.1) and (8.2) do have the 
disadvantage that the parameter E = s /R  which appears, does not have a unique 
value as neither the slip length s nor the macroscopic length R possess unique 
definitions. This non-uniqueness is eliminated if the terms of order Ca+' are included 
(as in the original results (7.12) and (7.13)). The appearance of 8 in (8.2) means that 
by merely changing the macroscopic lengthscale R ,  keeping Ow, urn, and Ca fixed, the 
value of the macroscopic contact angle Om and the variation of u along the interface 
should be changed. The dependence of em on R was also found for the movement of 

a(6,) 
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FIQURE 2. q(6) for various values of A. 

a surfactant-free interface (Cox 1986) and has been demonstrated experimentally 
[Ngan & Dussan V .  19821 for that  situation. 

The function q(6), given by (7.6), which describes the interfacial tension variation 
along the interface in the intermediate region (see (8.1)) has been plotted in figure 2 
for various values of A. It is seen that for all values of A (except h = 0 and h = 00)  

q(8) increases with 8 to a maximum value at 8 = 8* and then decreases with 8, where 
8* and h are related by h(B*) = 0 or 

{ ( R  - 13* )~  - sin2 8*} (sin 8* - 8* cos 8*) 

The function g(8), given by (7.7) and involved in the relation (8.2) for the value of 
the macroscopic contact angle 8,, is likewise plotted in figure 3 for various values 
of A. These results are qualitatively similar to the results for the equivalent function 
applicable to a surfactant-free interface (Cox 1986) in that g(8) attains a finite 
maximum value a t  8 = 180" for all A ,  except h = 0 for which g(8)+ co as 8+ 180'. 

I n  order to  compare the present results quantitatively with those for asurfactant-free 
interface (Cox 1986), the value of the macroscopic contact angle 8, has been plotted 
in figure 4 as a function of Cu In (e-l) for several values of A for the surfactant present 
and for the surfactant absent for 8, fixed (and equal to 40'). It is observed that for 
h close to unity the surfactant has little effect but that  there can be a large effect 
for h either small or large. However such results, for when the surfactant is present, 
are not realistic since Ow cannot really be considered fixed and should be considered 
as a, function of CT,. Thus assuming the relation (7.17) between 8, and (T, the results 
(8.1) and (8.2) may be used to calculate the macroscopic contact angle as a function 
of Cu (In e-l) [and hence of the spreading velocity U ]  for any chosen value of urn 
(determined by the surfactant concentration in the outer region) and A.  The 
characteristic interfacial tension g* used to make quantities dimensionless may be 
chosen as the magnitude of the difference in the surface energies per unit area of the 
solid surface in contact with the liquid A and with the liquid B, so that either 

A =  (8*2-sin2 8*){sin 8*- (x -8*)  cos 8*} '  (8.3) 
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FIQURE 3. g(0) for various values of A. 

I 

I 1 1 I I 1 I 1 I 
0 0.5 1 .o 

= Ca In ( E - ] )  

FIGURE 4. Macroscopic contact angle 0, as a function of Cu In ( € - I )  for various values of A with 
8, = 40°. Continuous lines are the results obtained from the present theory whilst the broken lines 
are for a surfactant-free interface (Cox 1986). 

go cos 8, = + 1 (for 8, < 90") or a. cos 8, = - 1 (for 8, > 90"). Depending on the 
values of am and A (and on whether go cos 8, was + 1 or - 1) it was found that many 
different types of behaviour could occur. The results for 11 particular examples (cases 
A-L) are shown in figure 5(a ,  b,  c) in which values of 8, and 8, have been plotted 
as a function of 7 = Caln (6- l )  for cases A-F and as a function of 
rB = (pB U/a*) In (6- l )  for cases G L .  The corresponding values of v,, vw and the 
maximum value a,,, of a (if different from a, or a,) are plotted in figure 6 ( a ,  6 ,  
c ) .  It is observed that as Ca is increased, a solution may fail to exist at some critical 
Ca due to 8,+180" (cases B, C, E, and F) or due to 8,+0" (case D). In case P, both 
8, and 8, --f 180" a t  this critical Ca. Case A is interesting in that the solution fails 
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FIGURE 5(a-c). For caption see facing page. 
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to exist at Cu In (8-l) N 0.10 due to Ow +Oo but then exists again at  Ca In (e-l) N 0.28 
(with BW = 0") up to Cu In (e-l) = 0.43 where the solution again fails to exist but this 
time because 8,+ 180". Since in the limit of no motion Cu+O, urn = uw i t  follows 
from (7.18) that in this limit urn 2 1.  However solutions for 0 < u, < 1 can exist 
for Cu # O  (cases H, J, K and L). Thus for case H i t  is seen that above 
A Cu In (6-l) N 0.63, two solutions exist, one of which has 8, increasing with Cu (with 
em-+ 180" at A Cu In (e-l) N 0.83) while the other has 8, decreasing with Cu (with 
8,+0" at h Culn (e-l) N 0.71). For case K, just one solution exists for 
0.88 < h Cu In (e-l) < 1.18, with 8, decreasing with Cu from a value of 180" at 
h Cu In (e-l) = 0.88 to 0" at h Cu In ( € - I )  = 1.18. Cases J and L are similar to H and 
K respectively except that 8, does not tend to zero in the limiting situation 8,-tO0. 
The question arises as to which of the two solutions in case H (and J) would actually 
occur. This may depend on the previous history of the system or it may be that one 
solution is unstable. In fact the unusual situation where 8, decreases with Cu (in 
cases H, J, K and L) may well be unstable since if a portion of the contact line near 0 
(see figure 1 )  is displaced to the right of its true position at any instant, 8, will usually 
be larger and so Cu (and hence the velocity of the contact line relative to the solid 
surface) will be reduced. This would cause the contact line to move still further ahead 
to the right. Thus disturbances to the contact line position will be amplified. 

Since no solution for case H ( A  = 00, u, cos 8, = + 1, u, = 0.55) exists for 
0 < g, < 0.63, the behaviour in this range of 7, is unknown so that it is uncertain 
whether case H for 7, > 0.63 (with 8, increasing with Cu) can be reproduced by 
keeping urn fixed (and equal to 0.55) and increasing 7, from zero to beyond the value 
0.63. However this case H can be obtained (see figure 7 e  with the roles of liquids A 
and B interchanged) by starting with u, = 1.5 at 7, = 0 (giving 8, = 8, = 48.2") 
and then increasing gB to a value of 0.7 (for which 8, N 102"). Keeping the value of gB 
now fixed at 0.7, the surfactant concentration far from the interface may be increased 
to reduce mrn from 1.5 down to the required value of 0.55 (for which 8, x 73"). In  this 
manner the case H (with 0.63 < 7, < 0.83) may be obtained in a continuous and 
predictable way. Similar remarks also apply to case J. 

From figure 6(u,  b,  c) it is noted that the maximum value urnax of the interfacial 
tension u can occur either at or near the inner region where u = uw (cases C, G,  H, 
J, K and L) or at or near the outer region where (T = (T, (cases A, B, D, E and F) 
or at some fixed point in the middle of the intermediate region (cases A, B, and E), 
with the point at which this maximum value of u occurs being possibly dependent 
on the value of Cu. The minimum value of u can only occur a t  the inner region (cases 
A, B, D, E and F) or at  the outer region (cases A, B, C, G, H, J, K and L). 

A very convenient way to show the results obtained from (7.17), (8.1), and (8.2) 
is to plot the macroscopic contact angle ern as a function of the interfacial tension 

FIGURE 5. Values of 8, (--) and 8, (---) as a function of 7 = Cu In (€- I )  [or of' vB for cases G, 
H, J,  K, LJ for case A :  A = 1 ,  8, cos 8, = + 1 ,  a, = 1.1547 (giving 8, = 8, = 30" at Cu = 0). €3: 
h = l ,  ~ , c o s ~ , = + ~ ,  a,=2 (giving 8,=8,=60" at C u = O ) .  C :  A = l ,  u,cos8 ,=-1 ,  
(r, = 2 (giving 8, = 8, = 120" at Cu = 0). D: A = 0, a, cos 8, = + 1, (r, = 2 (giving 8, = 8, = 60" 
at Cu = 0). E:  h = 0.1, a, cos 8, = - 1 ,  cr, = 2 (giving 8, = 8, = 120" at Cu = 0). F: A = 0, 
~ , ~ o s 8 , = - 1 ,  (r,=1.1547 (giving 8,=8,=150" at C u = O ) .  G: / \ = l o ,  a0cos8 ,=+1 ,  
a, = 0.9 (no solution for Cu = 0). H :  A = 00, a, cos 8, = + 1 ,  a, = 0.55 (no solution for Ca = 0) .  
J: A = lo4, a, cos 8, = + 1 ,  a, = 0.55 (no solution for Cu = 0) .  K: A = 00, a, cos 8, = + 1 ,  
a, = 0.25 (no solution for Ca = 0) .  L: h = lo*, a. cos 8, = + 1 ,  a, = 0.25 (no solution for Cu = 0) .  
Note: In order to conveniently plot the results, we have for the cases G L  plotted quantities as 
a function of qB = (pB U/a*) In ( € - I )  instead of as a function of 7. 
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FIGURE 6. Values of urn (-), crw (---) and crmax ( -  .-.-) aa a function of q [or of qB for cases 
G,  H, J, K, L] for each of the cases represented in figure S(a-c). 
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am for a fixed value of A (and a. cos O0 equal to either + 1 or - 1 )  for various (positive 
and negative) values of r] .  In  this manner the results from A = 0, 0.1, 1.0 and 10.0 
(u, COB 8, = +1) and for A = 0 (go cos 8, = - 1) (which may be used for A = a0 
(a, cos 8, = + 1) by interchanging the roles of the liquids A and B, replacing 8, by 
180"-8, and Ca by -pB U/a*), are shown in figure 7 (a-e) .  The broken lines in these 
figures show the limiting situation for a solution to exist (and corresponds to 8, = 0'). 
From these results it is observed that for 6, cos 0, = + 1, if A < 1 solutions exist only 
for a, 2 1, whilst if A > 1 solutions exist for all 6, 2 some a; where 6; = q(n)  and 
therefore lies between 0 and 1 and tends to 0 as A+ co (see figure 2). However for 
large A and small values of gm(> uz), the solution obtained may represent an 
unstable situation (cases K and L). It is also seen that whereas for the surfactant-free 
interface with A = 0, solutions exist for all values of Ca however large [Cox 1986), 
this is not the case for the present situation in which no solutions exist above a critical 
Ca In (s-l) due to O,+O (for 6, cos 8, = + 1  with Ca > 0) or to 8,+l8Oo (for 
a, cos 8, = - 1 with Ca > 0). 

The general behaviour described above and illustrated in figures 5-7 can be given 
a physical interpretation by noting that liquid A in the intermediate region produces 
a shear stress on the interface (see (3.33)) of 2 (sin 8-8  cos 8)/(82-sine 8) which is a 
monotonically decreasing function of 8 which - 28-' as 8+0 and +27c-' as 8+n. 
The same flow also produces a normal stress on the interface (see (3.35)) of 
28 sin 8/(02 - sin2 8 )  which is also a monotonically decreasing function of 8 which - 68-2 as 8+0 and + O  as 8+n. Thus for cases A 4  in which 8, is predicted to 
increase with increasing Ca, the direction of the shear stress on the interface may be 
obtained (see table 1). From this, the behaviour for increasing Ca of the maximum 
interfacial tension a,,, (if it  exists) and of 6, may be predicted from (3.4). Then (7.17) 
gives the behaviour of 8, which together with the behaviour of the normal stress on 
the interface can then be sometimes used to predict the behaviour of 8, with 
increasing Ca. Finally one can then predict whether the change in shape of the 
interface (due to increasing Ca) has the same effect on vmax and 6, as that predicted 
above due to the direct effect of increasing Ca. All these results for each of the cases 
A-J for various ranges of r] are tabulated in table 1. For cases H-L in which 0, is 
predicted to be a decreasing function of Ca, since 8, is small and hence Q, is close 
to unity, a different approach is taken. Thus for such cases, a, - urn does not change 
very much over the range of r] for which a solution exists. For cases H and K for 
which A = 00, the normal stress on the interface tends to 0 and 8, + 0. Hence Om --f 0 
as 8,+0. This implies that the dimensionless shear stress on the interface decreases 
as Ow +0, so that since u, - urn does not change much, the equation (3.4) would imply 
that Ca must increase for 8,+0. This behaviour is indicated in table 2. A similar 
situation exists for cases J and L ( A  large but not infinite) except that aa 8,-+0, the 
normal stress and 8, decrease to small positive vslues (and not to zero) due to the 
normal stress caused by the motion of the liquid A. 

If we omit the cases where 8, is a decreasing function of Ca which as already 
indicated would seem to correspond to an unstable situation, it is seen that there are 
at least three ways in which a solution can fail to exist. mese are: 

(a )  (Case A, q > 0.42, case B, q > 0.61; case C, r] > 0.17; case E, r] > 0.56; case 
G, qB > 0.76; case H, qB > 0.83; case J, r ]  > 0.83.) In these situations Om = 180' 
(with 8, tending to a constant value < 180 ) indicating that if the limiting values 
of q are exceeded that the motion becomes unsteady with a thick layer of liquid B 
being drawn beneath liquid A by the solid (see figure 8) which may then break up 
into drops. 

BO 
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FIGURE 7(a-c).  For caption see facing page. 
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FIQURE 7. Values of 8, as a function of urn for various values of Cu In (6- l )  for: ( a )  go cos 8, = + 1, 
h = 0; ( b )  uo cos 8, = + 1, h = 0.1 ; (c) uo coy 8, = + 1, A = 1.0; ( d )  uo cos 8, = + 1 ,  A = 10.00; ( e )  
u, COY 8, = - 1 ,  h = 0. The broken line in each case is the limit (0, = 0) for the existence of a 
solution. 

( b )  (Case A, T,I > 0.1 and 7 < 0.28; case D, T,I > 0.62; case G, qB < 0.22). In  these 
situations Bw+O" (with 0, tending to  a constant value > 0") and crw ++ 1 indicating 
that beyond the limiting values of T,I a very thin film of surfactant-covered liquid A 
will spread from the contact line under liquid B against the motion of the solid surface 
(see figure 8). The mechanics of the motion of such a thin film would determine its 
length and should this be greater than s, then the flow in the intermediate region 
would be modified (since uB would be zero at the film). 

(c) (Case F, 7 > 0.24). I n  this situation both Ow and 8, tend to 180" simultaneously 
with cW++ 1, indicating that if the limiting value of 7 is exceeded, a very thin film 
of surfactant-covered liquid B will spread from the contact line under liquid A and 
be carried downstream by the moving solid surface (see figure 8). 

I n  addition t o  the above, i t  is possible with the correct combination of values for 
A,  cro cos 8, and crm to have a situation (case intermediate between B and D) in which 
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Outer 
\ Intermediate ,/>-d/;,,(/,/ 

Intermediate B 

Outer 

Thin film 

(d > ____$ 

FIGURE 8. The ways in which a solution can fail to exist: (a) Om+ 180" with 8, < 180". If critical 
7 is exceeded, a layer of liquid B is pulled out which may then break up  into drops. (b) Ow+ 0" 
with 0, > 0". If critical 7 is exceeded, a thin film of surfactant-covered liquid A spreads along 
the solid surface against its motion. (c) 8, + 180" and Om+ 180". If critical 11 is exceeded, a thin 
film of surfactant covered liquid R is carried along by the solid surface. 

a t  a critical value of 7, 8,-+Oo with dm+ 180" [i.e. cases ( a )  and ( 6 )  above occur at 
the same critical 71. In  such a situat,ion a thick layer of liquid I3 would be pulled under 
fluid A in the direction of U while a thin film of liquid A would still exist between 
the layer of liquid A and the solid surface. The layer of liquid A may then break up 
into drops. 

For cases H and J if 7B is decreased below the critical value for the solution to exist 
it is not clear what happens, although for sufficiently small qB since uw would be less 
than unity, it would appear that bhe situation ( b )  described above would exist. 

For the surfactant-free situation [Cox 19861 the solution can fail to exist only in 
the manner (a) .  

The conditions for the validity of the assumptions listed in $2 will now be discussed. 
If the surface (shear or dilational) viscosity of the interface is of order ,us, then the 
maximum surface stress generated by the flow in any of the three expansion regions 
is of order ,us UIR.  This is negligible [assumption ( a ) ]  and so surface rheology effects 
may be disregarded if 
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The transport of surfactant in the liquids to or from the interface is diffusion 
dominated if 

E.4 1, 
Dl 

where D, is the characteristic diffusion constant for the surfactant in the liquids. 
Should this be the case then the flux of surfactant in the liquids towards the interface 
is of order D,c:/R (where c: is the characteristic volume concentration of the 
surfactant in the liquids) whilst the divergence of the surface flux in the interface 
is of order c*U/R (where c* is the characteristic interfacial concentration of 
surfactant). Thus the flux of surfactant to or from the interface from the liquids is 
negligible (assumption ( b ) )  if 

Should transport of the surfactant in the liquids be convection dominated so that 

UR ->> 1, 
D, 

(8.7) 

then the flux of surfactant across the boundary layer towards the interface is of order 
c:(D,U/R)t so that the condition (8.6), for the neglect of surfactant flux to the 
interface, must be replaced by 

If (8.6) or (8.8) is satisfied then the surfactant flux to the interface is negligible not 
only in the outer region but also in the intermediate and inner regions. 

If D is the diffusion constant for the surfactant within the liquid-liquid interface, 
then diffusion along the interface is negligible compared with convection (assumption 
( d ) )  in all three expansion regions if 

D 
- 4  1, us 

which may be expressed alternatively as 

PD Ca % -. 
U S  

(8.10) 

For a typical situation with p D  x lo-* g cm s-~, u = 10 dynes/cm and s = cm, 
(8.10) gives Ca 9 which is usually well satisfied in cases of interest for which 
viscous effects play any significant role. 

For any given value of urn and Ca In ( c l ) ,  the minimum value of u predicted by 
the present theory (which as we have seen may occur at the wall or at the outer region) 
must be greater than the minimum value of u which can be obtained by the 
surfactant-covered interface (assumption (e)). Thus for example for A = 0, 
uo cos Bo = + 1 with urn = 2 (figure 6 b ,  case D), if the minimum possible u is 1.4, the 
theory would be valid only for Ca In (cl) < 0.37, with surfactant accumulating at 
the wall for Ca In ( c l )  > 0.37. Similarly the maximum value of u predicted by the 
theory (which may occur at the wall, at the outer region or in the interior of the 
intermediate region) must be less than the maximum value of u attainable (which 
would normally occur for zero surfactant concentration). Thus for A = 1, 

8 FLM 168 
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uo cos 8, = + 1 with urn = 2 (figure 6 a ,  case B), if the maximum possible u is 2.05, 
the theory would be valid only for Ca In ( E - ~ )  < 0.41, with the surfactant layer 
breaking in the intermediate region (where 8 = 90°) when Cu In ( e - l )  = 0.41. For still 
larger values of Ca In (e-l) part of the interface in the intermediate region will have 
no surfactant present. 

The condition (3.28) for the neglect of time-dependent effects means that the theory 
cannot be applied at or immediately after a situation in which 8, takes a sudden jump 
in value as would occur if the contact line were to meet a sudden change in the nature 
of the solid surface. 

While in the theory described here, it was assumed that the Bond number B was 
small (see $2), it  is readily seen that for B of order unity (see Cox 1986), the results 
(7.12) and (7.13) are still valid since the effect of gravity is negligible in the 
intermediate and inner regions. However, for this situation, the effect of gravity 
would have to be included in calculating the outer region expansion. 

In  a manner similar to the surfactant-free situation considered by Cox (1986), there 
is also the possibility that at distances of about cm from the contact line, 
very high negative pressures can occur which can result in cavitation taking place. 
Should this occur then the theory described above would no longer be valid. 
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